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The electronic conductivity of Ca-A1 metallic glasses 

B J Hickey?, S Lyon*, G Bushnell-WyeS, J Finney$, M A Howson? and 
G J Morgan? 
t Department of Physics, The University of Leeds, Leeds LS2 9JT, UK 
$ Birkbeck College, University of London, Malet Street, London WClE 7HX, UK 
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Abstact. The magnitude and behaviour of the conductivity in Ca,AI, --I is of considerable 
interest as an example of a system with high resistivity where theories of weak and strong 
localisation can be tested without the complicating presence of transition metals and a 
corresponding high density of d states. In this paper we present computations of the density 
of states, the spectral function and the electrical resistivity using hard sphere structural 
models containing 216 atoms with periodic boundary conditions and pseudopotentials from 
a previous theoretical calculation. The computed resistivity follows quite well the general 
behaviour observed experimentally but it is rather larger and we show how this discrepancy 
can be accounted for by relatively small changes in the pseudopotential. 

1. Introduction 

In a recent paper (Howson er a1 1988) we have investigated the role of quantum inter- 
ference effects in enhancing the electrical resistivity of Ca,All -, amorphous metals over 
that which would be obtained using the Faber-Ziman (1965) theory of simple amorphous 
or liquid metal alloys. Although these alloys are ‘simple’ in comparison with transition 
metal alloys the calculation of the resistivity of Ca, Ba, or Sr using pseudopotentials is 
notoriously sensitive to the details of the pseudopotential (Moriarty 1972). This is 
because the Fermi energy is on the edge of the almost unoccupied d bands and 2KF is 
close to the first peak in the structure factor a(q) where KF is the Fermi wavevector. In 
the paper by Howson et a1 the effects of quantum interference were assessed using the 
simplest treatment of general transport equations formulated by Morgan et a1 (1985) in 
which the density of states and spectral function are presumed not to be changed 
drastically from the free electron form. This was justified by appealing to numerical 
calculations of the densities of states and experimental specific heat data. The cal- 
culations used Percus-Yevick hard sphere structure factors (see Ashcroft and Langreth 
1967) and pseudopotentials adjusted to give the same resistivity as pure liquid A1 and 
Ca. The whole point of that work was to demonstrate the importance of quantum 
interference effects in enhancing the Faber-Ziman theory rather than pretending we 
can carry out an ab initio calculation which would give ‘spot-on’ answers with structure 
factors, and pseudopotentials obtained from first principles. 

The purpose of our present paper is to take the same pseudopotentials together with 
model hard sphere structure factors and compute the electronic properties thus enabling 
us to assess our previous theoretical treatments as well as enabling us to test the numerical 
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method on a system for which we have experimental data. The numerical method is 
essentially that invented by Weaire and Williams (1977) adapted for a plane wave 
basis and we have already used this method to investigate the electronic properties of 
amorphous Si as a test case (Hickey and Morgan 1986, Morgan et a1 1989, Burr and 
Morgan 1990) where excellent structural models are available and rather reliable 
pseudopotentials are at hand. It is to be emphasised that our intent is to understand the 
physics of these kinds of materials using well defined structural models and pseudo- 
potentials rather than more refined forms which will no doubt be important in a com- 
pletely quantitative theory. It is our belief that there are broader issues which are more 
important at this point in time. 

In section 2 we describe the hard sphere structural models using algorithms described 
by Finney (1976) and make a comparison with the pair distribution functions obtained 
using the Percus-Y evick approximation and with molecular dynamics calculations per- 
formed by Hafner er a1 (1987). Section 2 is also concerned with the details of the 
pseudopotentials used for the alloy systems, while section 3 describes the calculations 
and results of the electronic transport properties using the equation of motion method 
in k-space, and we discuss the reasons why the computed resistivities turn out larger 
than the experimental and theoretical values obtained previously. The behaviour of the 
spectral functions are described in section 4. 

2. The pseudopotentials and structural models 

Our theoretical calculations for the Ca-A1 system emplyed Percus-Yevick hard sphere 
structure factors as described in detail by Ashcroft and Langreth. The pseudopotential 
assumed for A1 is the simple form 

u(q )  = 4nze2  [cos(qRo)/(q2 + Kf)] 

where K ,  is the inverse Fermi-Thomas length calculated using free electron densities of 
states and Ro is a fitting parameter to give the resistivity of liquid A1 (p  = 24 p Q  cm), 
namely, Ro = 1.15 au. The pseudopotential for Ca corresponds to that tabulated 
by Moriarty screened using the Fermi-Thomas approximation and scaled by a factor 
( E C a  - E C a  )/(EF - Ed) where E? is the Fermi energy of pure Ca, EY is the position 
of the d band for pure Ca. EF and E d  are the same parameters for the alloys system 
and EF - E d  was used to fit the experimental data including the effects of quantum 
interference corresponding to the simplest treatment of the Morgan et a1 equations. This 
scaling was only applied for values of q greater than 1.3KF where KF is the free electron 
wave vector for pure Ca as this is the part of the pseudopotential most important in 
describing scattering into the tail of the d states and the pseudopotential goes through 
zero at 1.3KF. We again emphasise that the point of this calculation was to demonstrate 
the importance of quantum interference in these alloys. However, we can now take 
these self-same potentials and specific hard model structures and perform numerical 
calculations using a plane wave representation and evaluate the conductivity using the 
equation of motion method in k-space (Hickey and Morgan 1986) and the method 
of Weaire and Williams for evaluating the Kubo-Greenwood formula (Kubo 1956, 
Greenwood 1958). Before describing these calculations in section 3, it is first necessary 
to discuss the model structures in relationship to the Percus-Yevick structures and the 
forms obtained from molecular dynamics using more realistic interatomic potentials 
(Hafner et a1 1987). 



The electronic conductivity of Ca-A1 metallic glasses 7289 

5 - 1  

AI-AI 

I ,  I I ?  I 

I o  2 4 6 8 10 

R chi  
Figure 1. The partial pair distribution functions for Cao ,AIo obtained from the model 
structure. 

The structural models and the Percus-Yevick structures were worked out using hard 
sphere radii corresponding to half the nearest-neighbour distances in crystalline A1 and 
Ca divided by a ‘softening’ factor of 1.2 which yields hard sphere radii of 2.28 au for A1 
and 3.11 au for Ca. The packing fraction for Ca was chosen to be 0.43t and we then 
enhanced the Moriarty pseudopotential by a factor of 1.4 for q > 1.3 to give the right 
resistivity for liquid Ca ( p  = 33 pR cm). This is reasonable as (E? - E?) is essentially 
a parameter in the theory. Glassy alloys of Ca,Al, --x have actually only been made for 
0.5 < x < 0.8 so we use the liquid state values for pure Ca and A1 to extend the range of 
experimental values. Quantum interference effects are very small for the resistivities of 
pure liquid Ca and A1 so this is also a sensible procedure. The densities of the alloys 
were taken from a linear interpolation between the densities of crystalline Ca 
(1530 kg m-3) and A1 (2700 kg m-3) which agrees with experimental measurements to 
within five per cent. The calculations of the structure were performed for 0 < x < 1 in 
steps of 0.2, and the packing fractions Cx are = 0.49, CO,+, = 
0.49, go,* = 0.47 and go = 0.43. 

The method for generating the hard sphere structures has been described in detail 
by Finney (1983) and corresponds to relaxing from an initial random structure by 
repeated small displacements of the atoms until no two spheres overlap. The resulting 
structures are also constrained to be periodic and each structure contains 216 atoms in 
total within a box having sides of length L determined by the density. The partial pair 
distribution functions have been obtained using ‘bins’ of width of 0.25 A. Every atom 
in the structure is used in the averaging progress because of the periodic boundary 
conditions. 

t Note that in the paper by Howson, Hickey and Morgan the packing fraction for Ca was misquoted as 0.483. 

= 0.43, go,8 = 0.46, 
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Figure 2. The partial pair distribution functions for Cq.6Aln obtained from molecular 
dynamics computations by Hafner et af (1987). 

In figures 1 and 2 we show the partial pair distribution functions for x = 0.6 and 
compare the behaviour with that obtained by Hafner et a1 using molecular dynamics for 
the liquid state followed by rapid quenching of the structure. There are clear differences: 
the most obvious being the relative and maximum heights of the first peak in the calcium 

R [ A ,  

Figure 3. The partial pair distribution functions for Can.6Aln,4 obtained from the Percus- 
Yevick hard sphere theory. 
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calcium distribution (Pcaca) and the AI-AI distributions (PAIAJ .  The height of the PAICa 
first peak is higher than the other two for our model, whereas the molecular dynamics 
calculation gives a peak height which is intermediate between the other two. This is 
probably due to the fact that the interatomic potentials used by Hafner eta1 have minima 
near the peak position and the depth of the minimum is greatest for AI-A1 interactions 
and weakest for Ca-Ca interactions. From the point of view of this paper, however, it 
is more relevant to compare the model distributions with those of the Percus-Yevick 
theory obtained by inverting the partial structure factors using numerical integration. 
These are shown in figure 3 and we now see a better correspondence between the 
behaviour of the peak heights for the model and the theory. The behaviour of the pair 
distributions for pure A1 and Ca is shown in figures 4-7, and it can be seen that there is 
again a reasonable degree of similarity between the model and theory. Although the 
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Figure 4. The model pair distribution for Al. 
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Figure 6. The model pair distribution for Ca. 
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Figure 7. The Percus-Yevick pair distribution for 
Ca. 
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model structures are not completely ideal for making a precise comparison with the 
calculations of Howson et al ,  this is not of overriding importance since our main concern 
is to carry out computations which demonstrate how very large resistivities arise in this 
kind of system without the necessity for a low density of states and to show that the 
method can be used successfully on realistic models to compute a range of electronic 
properties. As far as we are aware this is the first calculation of this kind. 

3. The computation of the electronic transport properties 

The equation of motion method in K-space has been used previously to compute the 
electronic structure of amorphous Si using a fully bonded model containing 216 atoms 
and about fourteen plane waves per atom (Hickey and Morgan 1986.) It has also been 
used to compute the self-energy, the conductivity and the diffusion coefficient in the 
region of the energy gap which is an extremely demanding task and we showed the 
probable position of mobility edges (Hickey et a1 1989). The application of the method 
to metals is less demanding because we are not trying to resolve fine details in the 
behaviour of the conductivity and we only need the conductivity at the Fermi energy. 
We again use about fourteen plane waves per atom, and the calculation proceeds as 
described by Hickey and Morgan (1986) and Hickey et a1 (1989). 

The wave function is written as 
KC 

q(rt)  = W 1 I 2  2 aK(t) exp(iK r )  
K 

where Kc = 1.92 KF and we then solve for the amplitudes as a function of time (Alben 
et a1 1975) using the simplest leap-frog method (Mackinnon 1984). The density of states 
g ( E ) ,  the Green function G,(E), the self-energy T ( K E )  and the spectral function 
p ( K E )  can then be obtained by using various initial conditions for the amplitudes aK. 
The conductivity has been calculated in the manner described by Weaire and Williams 
(1977), namely the conductivity as a function of energy is given by 

where Q is the volume of the system, the bars denote averages over time and a, denotes 
that the amplitudes aK have been 'filtered' to retain eigenstates near to the required 
energy E. The filtering process is that described by Hickey et a1 (1985) whereby the 
amplitudes are chosen to have a random phase at t = 0, the amplitudes are calculated 
up to a time TF and then filtered by integrating with 

n-l sin(E,,,t/h) exp(iEt/h)t-'.? 

E,,, is the half width of the filter function which selects states near to the energy E. The 
form of this filter function has been shown in the paper by Hickey et a1 (1989). The half- 
width of this filtering function has been chosen to be 0.2 eV. The filtered amplitudes are 
then calculated as a function of time in order to construct the time averages required in 
equation (2). Some typical examples of the behaviour of aF(E) (atomic units) as a 
function of the length of the time averaging are shown in figures 8 and 9 and it can be 

i The factor oft-' in this expression was omitted in Hickey et a1 (1990). 
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Figures. Typical behaviour of the conductivity U, 

in Ca as a function of the time of averaging. We 
use the average over the last 2500 time steps to 
calculate the conductivity in all cases. 

Figure 9. Typical behaviour of U in Cao dAIo as 
a function of time. 

seen that the averages have settled down to values which are fluctuating by about -+ 10%. 
Before discussing the details of the conductivity it is important to consider the density 
of states obtained for these alloys usiing the method described for a-Si (Hickey and 
Morgan 1986). 

The method results in a density of states convoluted with a Lorentzian and our value 
of the half-width has been chosen to be 0.4 eV. In a-Si we deconvoluted the density of 
states to obtain the behaviour near the gap but this is not an important issue in the 
present context. However, the results in figure 10 have been deconvoluted using the 
iterative method (Hickey and Morgan 1986) but using only a single iteration so that we 
do make the density of states too spiky. The zero of energy is the Fermi energy which 
has been calculated by integrating the density of states and this is the reason for partially 
deconvoluting the density of states. The important thing to notice is that there are 
fluctuations due to the finite size of the system as the allowed values of K tend to cluster 
around particular values. The conductivity in the vicinity of the Fermi energy naturally 
fluctuates in a similar way, so that we average the value at EF with four other values 
on either side of E,  in steps of 0.2 eV, which is the scale required to smooth out the 
fluctuations in the density of states. The behaviour of the conductivity correlates quite 
well with the density of states in some cases, as is shown in figure 11 for pure Al, but not 
in general, as is shown in figure 12 for Ca. It must be remembered that there will be real 
energy dependence of the conductivity superimposed on the fluctuations produced by 
the finite sizes of the system. In the case of A1 the conductivity is a slowly varying function 
when calculated from the Morgan et a1 or Faber-Ziman theory. In Ca, however, the 
calculated variation with energy is very large, as indicated by a large calculated ther- 
mopower (Howson et a1 1988). 

The results of our computations for the resistivity are shown in figure 12 as a function 
of composition. Also shown are the experimental results, the fitted calculations of 
Howson et a1 including quantum interference effects and the results obtained from the 
Faber-Ziman theory. Clearly our computed resistivities are greater than the exper- 



7294 B J Hickey et a1 

7 N 2 2 2 0 0 

3 x d "! 
0 



The electronic conductivity of Ca-A1 metallic glasses 7295 

2.0- 

1.5- 

1.0 

0.5 

imental values, but the general behaviour as a function of composition is reproduced. 
Let us first consider the case of A1 where the computed resistivity is 43 pQ cm compared 
with an experimental value of 24 pQ cm. This is actually an extremely reasonable result 
when one realises the very sensitive nature of the resistivity to pseudopotentials and 
structure factors. We have recalculated the resistivity for another computer generated 
model using the same parameters and obtain p = 50 p Q  cm which is in fair agreement. 
The pair distributions for our hard sphere results and the Percus-Yevick models are not 
in exact correspondence so the difference in the resistivities is not of major concern. The 
much larger computed resistivity of Ca (198 ? 60 p Q  cm) is of much greater importance 
and interest and an explanation of this is also relevant to understanding the generally 
larger resistivities across the composition range. 

The calculations of the resistivity by Howson et a1 (1988), which are shown in figure 
13, were obtained using the simplest form of the equations derived by Morgan et a1 
(1988) which ignored deviations from a free electron-like density of states and the 
effects of lifetime broadening on the elastic scattering rate. The parameters of the 
pseudopotentials and structure factors were then deduced by fitting the measured 
resistivities and, as explained before, to achieve this we enhanced the pseudopotential 
tabulated by Moriarty by a factor of 1.4 for q > 1.3 KF because the tabulated pseudo- 
potential gives a resistivity of 17.5 p Q  cm. This does not lead to a discontinuity in the 
pseudopotential as it goes through zero at q = 1.3 KF. Accordingly, we have repeated 
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Figure 11. The behaviour of the conductivity (upper diagram) and density of states for AI in 
the neighbourhood of the Fermi energy which is the energy zero in these diagrams. 
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the computer simulation for Causing the pseudopotential unenhanced by a factor of 1.4 
and we obtain the result p = 28 k 5 p52 cm. If the Faber-Ziman theory were precise for 
this pseudopotential the maximum change in the resistivity would be a reduction of a 
factor of two but we see a reduction in the resistivity by about an order of magnitude, 
indicating that for the enhanced potential the simple Faber-Ziman theory is not valid. 
Clearly the resistivity is especially sensitive to the behaviour of the pseudopotential and 
we now discuss this sensitivity in relationship to the Morganc et al theory (Morgan et a1 
1985). 

( 3 )  
hK 

T(KK’) ( p ’ ( ~ )  - p ’ ( ~ ’ ) )  = -e& ~ ( K E ~ )  (1 + y ( ~ ) )  
K’ 

where we have assumed, as is the case, that the lifetime broadening is much greater than 
kT.  In ( 3 )  p’ denotes the deviation from equilibrium, p ( K E F )  is the spectral function at 
the Fermi energy and y ( K )  is a function which cuts off the rather long-range tail of p 
which can lead to unphysical divergences. T(KK’) is a generalised scattering kernel, 
analogous to the vertex part in the Bethe-Salpeter equation (see, for example, Vollhardt 
and Wolfle 1980) and includes weak and strong localisation effects in general. In the 
case of Ca, which has a fairly low resistivity, we are primarily interested in the part of T ,  
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Percentage o f  AI  

Figure 13. The resistivity as a function of the per- 
centage of Al. The full circles denote the com- 
puted values for the enhanced pseudopotential 
while the full curve corresponds to a simplified 
form of the Morgan et a/ theory for the same 
pseudopotentials. The broken curve corresponds 
to the Faber-Ziman theory. The open circles cor- 
respond to the experimental values though those 
for pure Ca and AI are liquid state values. The full 
triangles corresond to computed values for the 
unenhanced forms of the Moriarty pseudopo- 
tential and good agreement is obtained with 
experiment. 

termed T ,  by Morgan et al( l985)  which does not contain quantum interference effects, 
namely 

(4) 
2n N 

TI (KK' )  = - - 
h R 2  n { [ ( h 2 / 2 m ) ( K 2  - K ' 2 ) ] 2  + [hz - ' (K  + K') /2I2} 

0 2 ( ~  - K')a(K - ~ ' ) h z - ' ( K  + K') /2  

where N/R is the number of atoms/unit volume, a(q) is the structure factor and 

t - l ( K )  = 2 T, (KK' ) .  ( 5 )  
K' 

Figure 14. The behaviour of q3u2(q)a(q) for Ca 
showing the very sharp rise for values of q > 2KF.  

0 1 2 

4/2K,  
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K laul ( 5 )  yielding t - I  as a function of K.  

In the Faber-Ziman theory, the Lorentzian-like part in (4) would be replaced by a Dirac 
delta function, and p ( 1  + y )  in (3) would be replaced by the derivative of the Fermi 
function. Perhaps the general point should be made that, for liquid and amorphous 
metals life time broadening of states is always much greater than kT. The reason why 
the replacement of the Fermi function by p( 1 + y )  is usually not of major importance is 
that if p(1 + y )  is reasonably narrow and free electron like, and occurs in integrals which 
are slowly varying as a function of K then p( 1 + y )  can be treated essentially as a delta 
function. 

In figure 14 we show the behaviour of q3v2(q)a(q)  where u(q) is the pseudopotential 
and a(q) is the structure factor used in fitting the resistivity of Ca. This is the argument 
of the integral which determines r & ,  the transport lifetime in the Faber-Ziman theory 
(see Morgan et a l l988) .  The plot is in units of 2KF so q = 1 is the maximum value of q 
in the integral 

where n is the number of atoms/unit volume. The important point is that q3v2a rises 
extremely rapidly for q > 2KF so that the lifetime broadening present in p( K )  and (4) 
will enable the large parts of this function to be sampled. Lifetime broadening has a 
double effect which will enhance the resistivity. In figure 15(a) we show the computed 
spectral function at EF as a function of K for the enhanced pseudopotential and it can be 
seen that the full width is about 1 eV which should be compared with a Fermi energy of 
about 5eV.  In figure 15 we show a self-consistent calculation of z-l as defined by 
equation ( 5 ) .  The behaviour of r-’((K + K’)/2)  is such that it would be zero for K = 
-K‘ if calculated non-self-consistently reducing the effect of broadening for scattering 

into the backward direction. However, if the resistivity of ‘amorphous’ Ca is calculated 
without quantum interference effects using the self-consistent values shown in figure 16, 
we obtain a resistivity of 57 pS2 cm which is about double that obtained from the Faber- 
Ziman theory. It can be seen, therefore, that lifetime broadening effects can have 
a strong effect on the resistivity which will then be further enhanced by quantum 
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Figure 17. The spectral function ( p )  as a function of E and K (in au) with the Fermi energy 
as the energy zero. (a )  Ca, (b )  Ca,,,AI, j, (c) Al. 
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interference. These facts qualitatively illustrate how a fairly moderate enhancement of 
the pseudopotential can result in a large increase in the resistivities which was not 
appreciated when we embarked on the computations described here. 

We have repeated the calculations of the resistivity right across the composition 
range using the pseudopotential unenhanced by a factor of 1.4. The results now agree 
extremely well with the experimental values and provide a basis for the investigation of 
properties such as the magnetoresistivity. We now turn to behaviour of the spectral 
functions calculated using the enhanced pseudopotentials. 

4. The spectral functions 

The spectral function can be calculated using the initial condition aK(0) = aKK0. If we 
denote the amplitude of the K states at later times by GKKa then the Fourier transform 
(atomic units) 

T m m  
CiKn(E)  = jo exp(-Et)CKKn(t) exp(iEt/h) d t  (7) 

yields the Green function GKKn convoluted with a Lorentzian of half width E. The 
magnitude of E is chosen so that the value of the integrand is negligible at T,,, which is 
the run time over which the amplitudes are allowed to evolve. For large systems we may 
write 

c,(E) = ( E  - K~ - r(m))-l (8) 

which corresponds to equating the ensemble average of the Green function to the 
diagonal component of G for a particular large system. If we define a self-energy for our 
small system in this way, then of course the self-energy so obtained will be dependent 
on the precise details of the model but, as shown in our calculations for amorphous 
Si, the behaviour of r so defined is very informative and the general behaviour is 
representative of a large system though of course the fine detail will depend on the details 
of the model structures. The real part of r (r,) and the imaginary part of r (r,) can be 
obtained from the calculated real and imaginary parts of C. The spectral function defined 
by 

p ( K E )  = ( l /n )  T, / [ (E  - K Z  - r R ) *  + rt] (9) 
may then be obtained either by calculating r R  and TI separately or from the imaginary 
part of GKK. Our procedure is to first partly deconvolute GKK(E) using an iterative 
method (Hickey and Morgan 1986) then calculate r R  or TI. The reason for only partly 
deconvoluting (by a single iteration) is that we do not wish to completely deconvolute 
the density of states into a set of delta-function-like peaks, yet we want to remove the 
smoothing effect of the finite run time T,,,. In figures 15(a), (b)  and (c) we show the 
form of the spectral function at EF as a function of K for Ca, Cao.6A10,4 and Al. The 
relative sharpness of the peaks for pure Ca and A1 is to be expected but the very broad 
nature of the spectral function for Cao.6Alo,4 was rather unexpected despite the large 
resistivity. It can be seen that the assumption of a reasonably well defined peak is likely 
to be inappropriate in this case despite the fairly free electron-like density of states. 

In figures 17(a), (b)  and (c) we show representative plots of the spectral functions 
for the same alloys. The nearly free-electron-like form is apparent for Ca and A1 over 
most of the energy range but the drastic broadening is apparent for Cao 6A10.4, especially 
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at the bottom of the band. The broadening will be reduced for the unenhanced 
pseudopotential for Ca but the same kind of structure is to be expected for the weaker 
pseudopotential. 

5. Conclusions 

The calculations reported here demonstrate a number of important points, not least of 
which is that one can perform numerical calculations for small systems described by a 
pseudopotential, and obtain sensible results. 

We have also shown that very large resistivities may be obtained without a low 
density of states in a metallic system, hence raising the possibility of obtaining an 
Anderson transition with a high density of electronic states as we have sought to do by 
making alloys of CaAl with Ba (Howson et a1 1988). 

The theoretical calculations of Howson et a1 (1988) represented a simple treatment 
of the Morgan et a1 (1985) theory of localisation where the effect of lifetime broadening 
was ignored and we placed our emphasis on illustrating the importance of quantum 
interference effects. The calculations in this paper show that broadening of the spectral 
function can be very large in the middle of the concentration range and that broadening 
can considerably enhance the resistivity for elements like Ca, when described by a 
generalised pseudopotential. 

Finally, this paper paves the way for carrying out calculations using a hybrid scheme 
of plane waves and localised d orbitals to discuss amorphous transition metal alloys, 
where a very important objective would be to calculate the Hall coefficient along the 
lines described here. 
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